IBM Integration Bus

Trades Application
Viewing data with Record and Replay

June, 2013

Hands-on lab built at product code level Version 9.0.0.0
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION TO RECORD AND REPLAY</td>
</tr>
<tr>
<td>SETTING UP THE APPLICATION FOR RECORD AND REPLAY</td>
</tr>
<tr>
<td>2.1 IMPORT THE APPLICATION</td>
</tr>
<tr>
<td>2.2 REVIEW THE FLOW MONITORING EVENT POINTS</td>
</tr>
<tr>
<td>2.3 CONFIGURE THE MONITORING EVENT TO EMIT THE MESSAGE PAYLOAD</td>
</tr>
<tr>
<td>2.4 DEPLOY THE APPLICATION</td>
</tr>
<tr>
<td>2.5 RECREATE THE MONITORING TABLES AND ENABLE FLOW MONITORING</td>
</tr>
<tr>
<td>2.6 ACTIVATE SECURITY FOR THE IB9NODE</td>
</tr>
<tr>
<td>2.7 IMPORT THE DATA STORE CONFIGURABLE SERVICES</td>
</tr>
<tr>
<td>2.8 DEFINE A WEB USER FOR RECORD/REPLAY</td>
</tr>
<tr>
<td>VIEW MESSAGES IN THE WEB BROWSER</td>
</tr>
<tr>
<td>REPLAYING MESSAGES</td>
</tr>
<tr>
<td>FAILED MESSAGES</td>
</tr>
</tbody>
</table>
1. Introduction to Record and Replay

This lab will use an application that comprises several message flows. The application process stock trade requests, and each trade executes five message flows, TRD1, TRD2, TRD3*, TRD4 and TRD5. The TRD3 message flow is executed on the basis of customer type (Gold, Regular or Guest). Several of the nodes of the message flows have monitoring points defined on them, using the Monitoring tab on the node properties. These monitoring points publish certain items of the message payload data, and this data is used by the Record and Replay web browser to view messages that have been processed, and to re-submit (replay) the message for re-processing.

The application contains the following message flow structure. The TRD3 flows are selected on the basis of the customer type. The TRD6 flow is executed if a validation failure occurs in TRD1.
2. Setting up the Application for Record and Replay

This lab assumes that the default broker, IB9NODE, is available. You may use other brokers, but you will need to adjust the supplied command files accordingly.

2.1 Import the Application

1. If not open, start the Integration Bus Toolkit and the IB Explorer.

 For the Toolkit, use the workspace c:\workspaces\IBWorkshop.

2. In the toolkit’s lower left, in the Broker’s view, ensure that IB9NODE is started. If it is stopped, start it by selecting IB9NODE, right-clicking, then selecting Start.
3. Right-click in the white space of the Application Development navigator, and select Import.
4. Select a Project Interchange file (Other, Project Interchange), and select the file `c:\student\Trades\application\Trades.zip`.

Ensure the Trades project is checked, and click Finish.
5. The Trades Application will be imported. Expand the application; the application consists of eight message flows. The message flows are executed in sequence, with just one of the TRD3* messages flows being used, depending on the type of customer.
2.2 Review the Flow Monitoring Event Points

The imported message flows contained in the Trades application already has several monitoring event points defined.

1. Open the TRD1_validate message flow, and click on the flow editor canvas (not on a node).

Clicking the Monitoring tab in the Properties pane will show all the flow monitoring points in the flow, and their initial status.
2. Click on the Input node.

The Monitoring properties now show just the events that have been defined for the Receive Trade input node. Just a single event is defined, for the Transaction Start monitoring point.

Highlight the Transaction Start event, and then click the Edit Button.
3. On the Basic tab, for the Event Name, the Literal option has been selected, and the Event Name to “Trade instruction received”.

Note that the Event Filter can be used to dynamically determine whether to emit a monitoring event, based on the value of a message element. The edit button can be used to generate the required XPath syntax for this. This example will emit events for all messages that it processes.
4. On the Correlation tab, the Local transaction correlator has been set to “customerID”, and the Parent transaction correlator has been set to “tradeOrderID”.

The Global transaction correlator has been left for values in later message flows.

If you want to change these values, you can use the Edit button to start the XPath editor. Or, you can simply edit the correlation fields directly.
5. Cancel the monitor dialogue windows for TRD1, and then open the TRD2_Customer_Type message flow, and review the monitoring configuration:
6. Open the monitoring event for the InputTrade node, and select the Correlation tab.

For the Global Transaction Correlator, you will see that the value has been set to $Root/XMLNSC/tra.tradeOrder/StockAmount. StockAmount is a new message tree element that has been created by the TRD1_Validate message flow, and is a combination of the trade and amount elements.
2.3 Configure the monitoring event to emit the message payload

The Replay function uses the raw message payload (bitstream) that can be emitted by an event monitoring point. If you do not plan to use the Replay function, do not configure the monitoring event to emit the bitstream. In this example, we will emit the bitstream on the node that processes the Validation failures.

1. In the TRD1_Validate message flow, click the Validation Failure node. Select the Monitoring property.
2. Click Edit to open the Monitoring Event editor for this node.

On the Basic tab, in the Event Payload section, note that “Include bitstream data in payload” has been selected.
Click OK, and then close the message flow.
2.4 Deploy the Application

1. Deploy the Trades Application, by right-clicking on the Application (not the message flows), and selecting Deploy. Deploy it to the default Integration Server.
2. Select the default Integration Server.

3. Validate that the Trades application has been deployed.
2.5 Recreate the monitoring tables and enable flow monitoring

1. In an Integration Bus Command Console, change directory to c:\student\Trades\install\DBSetup.

Run the command:
```
CreateTRADES_Tables.bat
```

This will open a new DOS window and recreate the Record/Replay tables in the TRADES database. This is required so that your scenario starts with a clean display of monitor events, and so that new events are easily viewable on the web browser.

2. Change directory to c:\student\Trades\monitoring.

Note. In this example, we have configured monitoring points on the message flow, using the Monitoring function on the flow and node properties. Flow monitoring can also be achieved non-invasively by using monitoring templates, not shown in this example.

Run the command:
```
enableMonitoringTrades
```

This will invoke the Integration Node command:
```
mqsichangeflowmonitoring IB9NODE
   -e default
   -k Trades
   -f TRD1_Validate
   -c active
```

with equivalent commands for the other message flows in the Trades application.

NB: If you redeploy the Application, this will reset the flow monitoring status, and you must reissue the command above to reactivate flow monitoring.

2.6 Activate Security for the IB9NODE

1. In an Integration Bus Command Console, issue the commands:

```
mqsisstop IB9NODE
mqsisstop IB9NODE
mqsisstop IB9NODE
``` 

The Integration node must now be restarted:
```
mqsisstart IB9NODE
```

This will require any users of the Web Admin browser to login, to see the required items.

2.7 Import the Data Store configurable services
The record/replay function uses a Data Store, which represents the database which holds the captured monitoring events. The data Store is defined to the Integration bus by using configurable services. You can define these manually, but for this lab we have already created these. These services need to be imported into IB9NODE.

1. In an Integration Bus Explorer, expand IB9NODE, right-click the configurable services and select Import.

 ![Integration Bus Explorer Screenshot]

2. Navigate to c:\student\trades\configurable_services, and import Trades_data_capture_store.configurableservice.

3. Perform the same import for: Trades_source.configurableservice
Trades_BPM_Data_Destination.configurableService

When complete, you will have added three new configurable services, as shown.

Note that the Trades_source service subscribes to the topic $SYS/Broker/IB9NODE/Monitoring/default/#. This means that this data source will collect all monitoring events that are generated by applications in the default server (execution group) of the IB9NODE integration node. Events emitted in other nodes or servers will not be collected by this data source.

2.8 Define a web user for Record/Replay

4. In an Integration Bus Command Console, change directory to c:\student\Trades\webadmin

Run the command: set_record_replay_users_MQauth

This will create the required MQ authorities for the profile ESBProfile3

Run the command: define_record_replay_users

This will create new web users for the Integration Bus. The “record3” user will be defined with the ESBProfile3, which provides full access to the record/replay function.
3. View messages in the Web Browser

1. Open a web browser; Firefox is installed on the prebuilt system.

 Use the URL: http://localhost:4414 (a configured link, “Integration Bus Console”, is provided on the prebuilt vmware image).

2. The following login screen will appear. Log in to the web interface using the record3 user. The password is “password” (using a zero character).
3. The “record3” user has full Integration Bus administrator access (because it uses the ESBProfile3 MQ user), so in the navigator you will see full details of the broker, the deployed applications, and you will be able to perform various operations, such as Start and Stop on these applications.

Expand the Data item in the navigator, expand Data Capture Stores, and select the Trades data capture store.

If you have recreated the record/replay tables, you will not see any items in the event list for Trades.

4. Use RFHUtil (on the Start menu if not already open) to send some new events to the Trades application.

In RFHUtil, open the file c:\student\Trades\data\TradeMessageGold_BNY347290.xml (a gold customer).

Send one instance of the data to the queue TRADE.VALIDATE.IN.

Repeat with the file ….\TradeMessageRegular… (Regular customer).

Repeat with the file ….\TradeMessageGuest ….. (Guest customer).
5. On the Data Viewer window, click Refresh.

The default display in the web browser will use the standard column heading names.
6. Click the Customize button.

Several facilities are available here:

1. Change the display name of each column by double-clicking the required display name, and change to the appropriate name. These changes are stored in the Broker Registry, and are retained uniquely for each data capture store. All users who display data from the same data capture store will see the changes made by this user. If you wish to record and view data which has a different meaning, you should record this in a separate data capture store.

2. Select or de-select any of the recorded fields for display.

3. Override the width of the displayed column (widths can still be changed using the divider bars).

Make the following changes:

- `localTransactionId` field has display name “Customer number”.
- `parentTransactionId` has display name “Trade number”.
- `globalTransactionId` has display name “Stock / Trade amount”.
- `eventName` has display name “Trade processing stage”.
- `eventName (Trade Processing stage)` has field width 160.
- `hasBitstream` – deselect.
7. Click Apply. The updated display will look something like this:

![Updated display example]

8. Click on the Event Time column to display the oldest events first.

9. Click on any other column to order the events depending on the content of the clicked column (e.g., Customer number or Trade number).
10. Filtering.

You can limit the displayed data by using the Filter function. Click Filter, and then specify some filter criteria.

In this example, select “Customer number” starts with “CG”.

Click Filter to activate the defined filters.

Activating a filter similar to the above will result in a reduced data display similar to this:
11. You can add additional filters to the display. Click Filter again, and click the green plus sign to add a second filter, as shown. Note that the values for each filter are case-sensitive.

Click Filter to activate the new filter.

12. The data viewer will now show just one matching record.

13. Clear the filter.

You can clear all filters by clicking “Clear Filter”.

Click Clear to confirm, and optionally set the check box to not see the message again.
4. Replaying Messages

We will now configure the IB9NODE to allow messages to be replayed. This means that messages displayed on the web browser can be selected and resent to the same, or a different, message flow for further processing.

In this scenario, you will just replay the message by sending it to a separate MQ queue, although it will not be processed by any additional application.

1. First, review the configurable service that has been defined to enable the replay.

 In the IB Explorer, expand the IB9NODE, and expand Configurable Services. Select the appropriate Data Destination configurable service. You will see that this destination will enable messages to be routed to the TRADE.FIX.IN queue. In this example, this queue is processed by a simple message flow in the Trades application, but in another scenario it might be processed by a BPM application which could provide the facilities to make detailed amendments to the messages, prior to resending to the Trades application again.

 Click Finish.
2. In the web browser Data Viewer, again select the Customise button. Check the "hasBitstream" item, and click Apply.
3. Select some of the messages for replay by placing a tick in the checkbox and clicking the "Mark for replay" button, which will now be active. Make sure at least one of the selected messages shows the coloured bitstream icon.

4. Clicking the “Mark for replay” button will take you to the Replay List. However, you will still not be able to invoke the Replay function.
5. On the Data Destination, select the destination Trades_REDIRECT_TO_BPM.

6. On the Replay List, click Replay All (or you can replay each item individually by clicking the green arrow against each item).

You will see that the item that contained the data bitstream has been successfully sent to the replay destination. Note however, that this does not mean that it has been successfully processed by that application; it has simply been sent to the receiving destination.

Items that did not contain a data bitstream cannot be replayed, as described by the error message seen on the Replay List view.
7. Confirm the messages have been sent to the Replay queue. In MQ Explorer, select Queues under IB9QMGR. The queue depth of TRADES.FIX.OUT should have increased by 2 (or however many messages you sent for replay).

8. Depending on the nature of the message flow, and the types of events that you decide are eligible for replaying, the replay queue could be the same input queue that the original message flow uses, or a separate queue and a separate (and different) message flow.
5. Failed Messages

If a message flow encounters an error during processing, this can be captured and reported using the web browser.

To do this, the monitoring point on the message flow node must be configured to include the $ExceptionList in the monitoring event message. The TRD1_Validate message flow has been configured in this way.

1. In the Broker Toolkit, click the Validation Failure node.
2. In the Monitoring properties, click Edit, and in the Event Payload section, you will see that the Data Location has been configured to include the $ExceptionList.

![Event Payload](image)

3. Using RFHUtil, send further events to the Trades application.

Open the file c:\student\Trades\data\TradeMessage_BadMessage.xml to the queue TRADE.VALIDATE.IN. Although this message is a valid XML message, it has one of the required xml elements missing, and will fail validation on the ReceiveTrade node.
4. Back in the web browser, again with the record3 user, you will see two new entries like this (note earlier entries have been removed for clarity).

![Data Capture Store](image)

5. Failed events are highlighted by customizing the displayed columns. Click the Customize button, and (if not already check marked) tick the “hasException” box. Click Apply.

![Customize Columns](image)

The Errors column will show a red cross for all monitoring events that contain the $ExceptionList data.

![Data Capture Store](image)

6. This concludes the Record and Replay – Trades Example Lab Guide.