page-brochureware.php

IBM PowerAI developer portal

Learn about deep learning and PowerAI. Create something amazing.

IBM PowerAI Vision Version 1.1.3

Released: 03/15/2019

About PowerAI Vision

PowerAI Vision can help provide robust end-to-end workflow support for deep learning models related to computer vision. This enterprise-grade software provides a complete ecosystem to label raw data sets for training, creating, and deploying deep learning-based models. PowerAI Vision is designed to empower subject matter experts with no skills in deep learning technologies to train models for AI applications. It can help train highly accurate models to classify images and detect objects in images and videos.

PowerAI Vision is built on open source frameworks for modeling and managing containers to deliver a highly available framework, providing application lifecycle support, centralized management and monitoring, and support from IBM. Learn more:

What’s new in PowerAI Vision Version 1.1.3

PowerAI V1.1.3 builds upon previous releases and includes the following updates and features:

  • GPU sharing for deployed models
    The full version of PowerAI Vision now supports GPU sharing for deployed models. Deploying multiple models to a single GPU allows you to get the most out of your processing power. GPU sharing is supported only for GoogleNet and Faster R-CNN models. For more information, see Deploying a trained model.
  • Train with a Detectron model
    You can now use a Detectron model to train a model. This allows you to train with objects that have been labeled as non-rectangular shapes. For details, see Training a model.
  • Transfer learning
    You can use a model that was previously trained with PowerAI Vision as a base model to train new models. For details, see Training a model.
  • Use non-rectangular shapes when labeling
    When labeling objects in a data set that will be used to train a Detectron model, you can use non-rectangular shapes. Non-rectangular labeling is supported in images, video frames, and with auto labeling. If you label objects with non-rectangular shapes and train the data set using a different model, associated rectangular bounding boxes are used. For more information, see Labeling objects.
  • Support of COCO annotations
    Images with COCO annotations can be imported. Only object detection annotations are supported. For more information, see Importing images with COCO annotations.
  • Downloadable heat map
    You can download the heat map that is generated when testing an image with a deployed model.
  • Decrypting a trained model
    You can decrypt a model in PowerAI Vision Inference Server. See PowerAI Vision Inference Server for details.
  • Improved performance for inference
    Speeds when using the image classification (GoogLeNet) and object detection (Faster R-CNN) models for inference are improved. The improvement is especially significant for high-resolution images.
  • Improvements to the user interface
  • Supported hardware
    • IBM Power System AC922 with NVIDIA Tesla V100 GPUs
    • IBM Power System S822LC with NVIDIA Tesla P100 GPUs
  • Supported operating systems
    • Red Hat Enterprise Linux 7.6
    • Ubuntu 18.04 is fully supported
  • Install information

PowerAI Vision code patterns

Check out these real world examples and tutorials that highlight PowerAI Vision in action.

Tell us what you think

Your feedback is important to us. After you download PowerAI Vision and give it a try, please tell us about your experience by taking this short survey.

Learn more