Code Pattern
Get the code
By Gil Vernik, Paul Van Eck, Rich Hagarty | Published February 1, 2019
Artificial IntelligenceData ScienceDeep LearningMachine LearningObject StoragePythonServerlessCloud
This code pattern uses a Jupyter Notebook running in Watson Studio to demonstrate how serverless computing can provide a great benefit for AI data preprocessing. The pattern demonstrates face recognition deep learning using the Watson Machine Learning service, while letting PyWren with IBM Cloud Functions do the data preparation phase. This makes an entire process up to 50 times faster compared to running the same code without using serverless computing.
Let’s say you write a function in Python to process and analyze some data. You successfully test the function using a small amount of data, and now you want to run the function as a serverless action at massive scale, with parallelism, against terabytes of data.
What options do you have? Obviously, you don’t want to learn cloud IT tricks and set up virtual machines. Nor do you necessarily want to become a serverless computing expert in scaling data inputs, processing outputs, and monitoring concurrent executions.
PyWren provides a solution. It lets you run your code against a large data set, get the results, and consider the value of insights gained. It greatly reduces the processing time by parallelization of the jobs in a simple manner.
In this code pattern, you’ll walk through an end-to-end workflow that covers data preprocessing with PyWren, then use the data to train AI models.
Find the detailed steps for this pattern in the readme file. The steps will show you how to:
Get the Code »
Artificial IntelligenceContainers
AnalyticsArtificial Intelligence+
Artificial IntelligenceData Science+
Back to top