Digital Developer Conference: Hybrid Cloud. On Sep 22 & 24, start your journey to OpenShift certification. Free registration

Validate computer vision deep learning models

This code pattern is part of the Getting started with IBM Maximo Visual Inspection learning path.

Level Topic Type
100 Introduction to computer vision Article
101 Introduction to IBM Maximo Visual Inspection Article
201 Build and deploy an IBM Maximo Visual Inspection model and use it in an iOS app Tutorial
202 Locate and count items with object detection Code pattern
203 Object tracking in video with OpenCV and Deep Learning Code pattern
301 Validate computer vision deep learning models Code pattern
302 Develop analytical dashboards for AI projects with IBM Maximo Visual Inspection Code pattern
303 Automate visual recognition model training Code pattern
304 Load IBM Maximo Visual Inspection inference results in a dashboard Code pattern
305 Build an object detection model to identify license plates from images of cars Code pattern
306 Glean insights with AI on live camera streams and videos Code pattern

Summary

After a deep learning computer vision model is trained and deployed, it is often necessary to periodically (or continuously) evaluate the model with new test data. This developer code pattern provides a Jupyter Notebook that will take test images with known “ground-truth” categories and evaluate the inference results versus the truth.

Description

We will use a Jupyter Notebook to evaluate an IBM Maximo Visual Inspection image classification model. You can train a model using the provided example or test your own deployed model. The notebook will use test images, which are separated into directories to indicate the expected category classifications. These expected classifications are considered the “ground truth.” The deployed model’s API endpoint will be called to collect the inference results for each image. The collected results are then used to evaluate the actual model performance. Model accuracy is demonstrated by showing a confusion matrix and calculating a variety of the most common statistics used to measure the accuracy of a model.

When you have completed this code pattern, you will understand how to:

  • Train and deploy an image classification model with IBM Maximo Visual Inspection
  • Run a Jupyter Notebook
  • Evaluate the results using a variety of accuracy statistics
  • Validate existing deployed models with new test data sets

Flow

Validate deep learning models flow

The steps will show you how to:

  1. Create a data set.
  2. Train a model for image classification.
  3. Deploy it to a REST API endpoint.
  4. Validate the model with new data.

Instructions

Find the detailed steps for this pattern in the README file. Learn how to:

  1. Clone the repo.
  2. Log in to IBM Maximo Visual Inspection.
  3. Create a data set.
  4. Assign categories to images.
  5. Train the model.
  6. Deploy and test.
  7. Run the notebook.
  8. Analyze the results.

Conclusion

This code pattern used a Jupyter Notebook to evaluate an IBM Maximo Visual Inspection image classification model by taking test images with known “ground-truth” categories and evaluating the inference results versus the truth. The code pattern is part of the Getting started with IBM Maximo Visual Inspection learning path. To continue the series and learn about more IBM Maximo Visual Inspection features, take a look at the next code pattern, Develop analytical dashboards for AI projects with IBM Maximo Visual Inspection.